作者:解学武

数组的顺序存储结构(C语言实现)

前面讲过,数组是一种“特殊”的线性存储结构,它不会对内部的元素做插入和删除操作,有可能做查找(读取)和修改操作。因此,我们经常选用顺序存储结构(顺序表)来实现数组,而不用链式结构(链表)。

顺序表查找和修改元素的效率比链表高,而插入和删除元素的效率不如链表。

数组可以是多维的,而顺序表只能是一维的线性空间。要想将 N 维的数组存储到顺序表中,可以采用以下两种方案:
  1. 以列序为主(先列后行):按照行号从小到大的顺序,依次存储每一列的元素;
  2. 以行序为主(先行后序):按照列号从小到大的顺序,依次存储每一行的元素。

多维数组中,最常用的是二维数组,接下里就以二维数组为例,讲解数组的顺序存储结构。
 


图 1 二维数组


例如,将图 1 所示的二维数组按照“列序为主”的方案存储时,数组中的元素在顺序表中的存储状态如下图所示:
 

图 2 以列序为主的二维数组存储状态

同样的道理,按照“行序为主”的方案存储数组时,各个元素在顺序表中的存储状态如图 3 所示:


图 3 以行序为主的二维数组存储状态

C 语言中,多维数组的存储采用的就是以行序为主的顺序存储方案。

通过以上内容,我们掌握了将多维数组存储在一维内存空间的方法。那么,如何在顺序表查找和修改数组中的指定元素呢?

顺序表中查找和修改数组元素

注意,只有在顺序表内查找到数组中的目标元素之后,才能对该元素执行读取和修改操作。

在 N 维数组中查找目标元素,需知道以下信息:
  • 数组的存储方式;
  • 数组在内存中存放的起始地址;
  • 目标元素在数组中的坐标。比如说,二维数组中是通过行标和列标来确定元素位置的;
  • 数组中元素的类型,即数组中单个数据元素所占内存的大小,通常用字母 L 表示;

根据存储方式的不同,查找目标元素的方式也不同。仍以二维数组为例,如果数组采用“行序为主”的存储方式,则在二维数组 anm 中查找 aij 位置的公式为:

LOC(i, j) = LOC(0, 0) + (i * m + j) * L;

其中,LOC(i, j) 为 aij 在内存中的地址,LOC(0, 0) 为二维数组在内存中存放的起始位置(也就是 a00 的位置)。

而如果采用以列存储的方式,在 anm 中查找 aij 的方式为:

LOC(i, j) = LOC(0, 0) + (j * n + i) * L;

根据以上两个公式,就可以在顺序表中找到目标元素,自然也就可以进行读取和修改操作了。

数组顺序存储结构的具体实现

以下给出了采用以行序为主的方式存储三维数组 a[3][4][2] 的 C 语言代码实现,这里不再对该代码进行分析(代码中有详细注释),有兴趣的读者可以自行拷贝运行:
#include<stdarg.h>
#include<malloc.h>
#include<stdio.h>
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h>

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW 3
#define UNDERFLOW 4
typedef int Status; //Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; //Boolean是布尔类型,其值是TRUE或FALSE
typedef int ElemType;

#define MAX_ARRAY_DIM 8 //假设数组维数的最大值为8
typedef struct
{
    ElemType* base; //数组元素基址,由InitArray分配
    int dim; //数组维数
    int* bounds; //数组维界基址,由InitArray分配
    int* constants; // 数组映象函数常量基址,由InitArray分配
} Array;

Status InitArray(Array* A, int dim, ...)
{
    //若维数dim和各维长度合法,则构造相应的数组A,并返回OK
    int elemtotal = 1, i; // elemtotal是元素总值
    va_list ap;
    if (dim<1 || dim>MAX_ARRAY_DIM)
        return ERROR;
    (*A).dim = dim;
    (*A).bounds = (int*)malloc(dim * sizeof(int));
    if (!(*A).bounds)
        exit(OVERFLOW);
    va_start(ap, dim);
    for (i = 0; i < dim; ++i)
    {
        (*A).bounds[i] = va_arg(ap, int);
        if ((*A).bounds[i] < 0)
            return UNDERFLOW;
        elemtotal *= (*A).bounds[i];
    }
    va_end(ap);
    (*A).base = (ElemType*)malloc(elemtotal * sizeof(ElemType));
    if (!(*A).base)
        exit(OVERFLOW);
    (*A).constants = (int*)malloc(dim * sizeof(int));
    if (!(*A).constants)
        exit(OVERFLOW);
    (*A).constants[dim - 1] = 1;
    for (i = dim - 2; i >= 0; --i)
        (*A).constants[i] = (*A).bounds[i + 1] * (*A).constants[i + 1];
    return OK;
}

Status DestroyArray(Array* A)
{
    //销毁数组A
    if ((*A).base)
    {
        free((*A).base);
        (*A).base = NULL;
    }
    else
        return ERROR;
    if ((*A).bounds)
    {
        free((*A).bounds);
        (*A).bounds = NULL;
    }
    else
        return ERROR;
    if ((*A).constants)
    {
        free((*A).constants);
        (*A).constants = NULL;
    }
    else
        return ERROR;
    return OK;
}

Status Locate(Array A, va_list ap, int* off) // Value()、Assign()调用此函数 */
{
    //若ap指示的各下标值合法,则求出该元素在A中的相对地址off
    int i, ind;
    *off = 0;
    for (i = 0; i < A.dim; i++)
    {
        ind = va_arg(ap, int);
        if (ind < 0 || ind >= A.bounds[i])
            return OVERFLOW;
        *off += A.constants[i] * ind;
    }
    return OK;
}

Status Value(ElemType* e, Array A, ...) //在VC++中,...之前的形参不能是引用类型
{
    //依次为各维的下标值,若各下标合法,则e被赋值为A的相应的元素值
    va_list ap;
    Status result;
    int off;
    va_start(ap, A);
    if ((result = Locate(A, ap, &off)) == OVERFLOW) //调用Locate()
        return result;
    *e = *(A.base + off);
    return OK;
}

Status Assign(Array* A, ElemType e, ...)
{
    //依次为各维的下标值,若各下标合法,则将e的值赋给A的指定的元素
    va_list ap;
    Status result;
    int off;
    va_start(ap, e);
    if ((result = Locate(*A, ap, &off)) == OVERFLOW) //调用Locate()
        return result;
    *((*A).base + off) = e;
    return OK;
}

int main()
{
    Array A;
    int i, j, k, * p, dim = 3, bound1 = 3, bound2 = 4, bound3 = 2; //a[3][4][2]数组
    ElemType e, * p1;
    InitArray(&A, dim, bound1, bound2, bound3); //构造3*4*2的3维数组A
    p = A.bounds;
    printf("A.bounds=");
    for (i = 0; i < dim; i++) //顺序输出A.bounds
        printf("%d ", *(p + i));
    p = A.constants;
    printf("\nA.constants=");
    for (i = 0; i < dim; i++) //顺序输出A.constants
        printf("%d ", *(p + i));
    printf("\n%d页%d行%d列矩阵元素如下:\n", bound1, bound2, bound3);
    for (i = 0; i < bound1; i++)
    {
        for (j = 0; j < bound2; j++)
        {
            for (k = 0; k < bound3; k++)
            {
                Assign(&A, i * 100 + j * 10 + k, i, j, k); // 将i*100+j*10+k赋值给A[i][j][k]
                Value(&e, A, i, j, k); //将A[i][j][k]的值赋给e
                printf("A[%d][%d][%d]=%2d ", i, j, k, e); //输出A[i][j][k]
            }
            printf("\n");
        }
        printf("\n");
    }
    p1 = A.base;
    printf("A.base=\n");
    for (i = 0; i < bound1 * bound2 * bound3; i++) //顺序输出A.base
    {
        printf("%4d", *(p1 + i));
        if (i % (bound2 * bound3) == bound2 * bound3 - 1)
            printf("\n");
    }
    DestroyArray(&A);
    return 0;
}
运行结果为:
A.bounds=3 4 2
A.constants=8 2 1
3页4行2列矩阵元素如下:
A[0][0][0]= 0 A[0][0][1]= 1
A[0][1][0]=10 A[0][1][1]=11
A[0][2][0]=20 A[0][2][1]=21
A[0][3][0]=30 A[0][3][1]=31

A[1][0][0]=100 A[1][0][1]=101
A[1][1][0]=110 A[1][1][1]=111
A[1][2][0]=120 A[1][2][1]=121
A[1][3][0]=130 A[1][3][1]=131

A[2][0][0]=200 A[2][0][1]=201
A[2][1][0]=210 A[2][1][1]=211
A[2][2][0]=220 A[2][2][1]=221
A[2][3][0]=230 A[2][3][1]=231

A.base=
   0   1  10  11  20  21  30  31
 100 101 110 111 120 121 130 131
 200 201 210 211 220 221 230 231

添加微信咨询 添加管理员微信
免费领视频教程
加管理员微信免费领视频教程
微信ID:xiexuewu333